Damping of Kinetic Transport Equation with Diffuse Boundary Condition

نویسندگان

چکیده

We prove that exponential moments of a fluctuation the pure transport equation decay pointwisely almost as fast $t^{-3}$ when domain is any general strictly convex subset $\mathbb{R}^3$ with smooth boundary diffuse condition. theorem by establishing novel $L^1$-$L^\infty$ framework via stochastic cycles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition

Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...

متن کامل

Kinetic Equations with Maxwell Boundary Condition

We prove global stability results of DiPerna-Lions renormalized solutions to the initial boundary value problem for kinetic equations. The (possibly nonlinear) boundary conditions are completely or partially diffuse, which include the so-called Maxwell boundary condition, and we prove that it is realized (it is not relaxed!). The techniques are illustrated with the Fokker-Planck-Boltzmann equat...

متن کامل

TRANSPORT EQUATION WITH FUZZY DATA

In this paper, we use the generalized differentiability concept tostudy the fuzzy transport equation. We consider transport equationin the homogeneous and non-homogeneous cases with fuzzy initialcondition. We also present the solution when speed parameter is a fuzzynumber. Our method is based on the construction of the solutionsby employing Zadeh's extension principle.

متن کامل

Degenerate Convection-Diffusion Equation with a Robin boundary condition

We study a Robin boundary problem for degenerate parabolic equation. We suggest a notion of entropy solution and propose a result of existence and uniqueness. Numerical simulations illustrate some aspects of solution behaviour. Monodimensional experiments are presented. Mathematics Subject Classification (2010). Primary 35F31; Secondary 00A69.

متن کامل

Regularization for a Laplace Equation with Nonhomogeneous Neumann Boundary Condition

We consider the following problem  uxx + uyy = 0, (x, y) ∈ (0, π)× (0, 1) u(0, y) = u(π, y) = 0, y ∈ (0, 1) uy(x, 0) = g(x), 0 < x < π u(x, 0) = φ(x), 0 < x < π The problem is shown to be ill-posed, as the solution exhibits unstable dependence on the given data functions. Using the new method, we regularize of problem and obtain some new results. Some numerical examples are given to illu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Siam Journal on Mathematical Analysis

سال: 2022

ISSN: ['0036-1410', '1095-7154']

DOI: https://doi.org/10.1137/21m1455358